S ### **Steam Plant Components** ## Ideal Rankine Cycle (w/o Superheat) - 1 Saturated Liquid - 3 Saturated Vapor - 2 Subcooled Liquid - 4 Wet Vapor (Saturated Steam) **Table 1: Saturated Steam (by Temperature)** | | Abs Press. | Specific Volume | | | | Enthalpy | | | | | | |------------------------------|--|--|---|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------| | Temp
Fahr
t | Lb per
Sq In.
p | Sat.
Liquid
V f | Evap
V fg | Sat.
Vapor
Vg | Sat.
Liquid
h f | Evap
h fg | Sat.
Vapor
h _g | Sat.
Liquid
^S f | Evap
Sfg | Sat.
Vapor
S g | Temp
Fahr
t | | 32.0* | 0.08859 | 0.016022 | 3304.7 | 3304.7 | - 0.0179 | 1075.5 | 1075.5 | 0.0000 | 2.1873 | 2.1873 | 32.0 * | | 34.0 | 0.09600 | 0.016021 | 3061.9 | 3061.9 | 1.996 | 1074.4 | 1076.4 | 0.0041 | 2.1762 | 2.1802 | 34.0 | | 36.0 | 0.10395 | 0.016020 | 2839.0 | 2839.0 | 4.008 | 1073.2 | 1077.2 | 0.0081 | 2.1651 | 2.1732 | 36.0 | | 38.0 | 0.11249 | 0.016019 | 2634.1 | 2634.2 | 6.018 | 1072.1 | 1078.1 | 0.0122 | 2.1541 | 2.1663 | 38.0 | | 40.0 | 0.12163 | 0.016019 | 2445.8 | 2445.8 | 8.027 | 1071.0 | 1079.0 | 0.0162 | 2.1432 | 2.1594 | 40.0 | | 42.0 | 0.13143 | 0.016019 | 2272.4 | 2272.4 | 10.035 | 1069.8 | 1079.9 | 0.0202 | 2.1325 | 2.1527 | 42.0 | | 44.0 | 0.14192 | 0.016019 | 2112.8 | 2112.8 | 12.041 | 1068.7 | 1080.7 | 0.0242 | 2.1217 | 2.1459 | 44.0 | | 46.0 | 0.15314 | 0.016020 | 1965.7 | 1965.7 | 14.047 | 1067.6 | 1081.6 | 0.0282 | 2.1111 | 2.1393 | 46.0 | | 48.0 | 0.16514 | 0.016021 | 1830.0 | 1830.0 | 16.051 | 1066.4 | 1082.5 | 0.0321 | 2.1006 | 2.1327 | 48.0 | | 50.0 | 0.17796 | 0.016023 | 1704.8 | 1704.8 | 18.054 | 1065.3 | 1083.4 | 0.0361 | 2.0901 | 2.1262 | 50.0 | | 52.0 | 0.19165 | 0.016024 | 1589.2 | 1589.2 | 20.057 | 1064.2 | 1084.2 | 0.0400 | 2.0798 | 2.1197 | 52.0 | | 54.0 | 0.20625 | 0.016026 | 1482.4 | 1482.4 | 22.058 | 1063.1 | 1085.1 | 0.0439 | 2.0695 | 2.1134 | 54.0 | | 56.0 | 0.22183 | 0.016028 | 1383.6 | 1383.6 | 24.059 | 1061.9 | 1086.0 | 0.0478 | 2.0593 | 2.1070 | 56.0 | | 58.0 | 0.23843 | 0.016031 | 1292.2 | 1292.2 | 26.060 | 1060.8 | 1086.9 | 0.0516 | 2.0491 | 2.1008 | 58.0 | | 60.0 | 0.25611 | 0.016033 | 1207.6 | 1207.6 | 28.060 | 1059.7 | 1087.7 | 0.0555 | 2.0391 | 2.0946 | 60.0 | | 62.0 | 0.27494 | 0.016036 | 1129.2 | 1129.2 | 30.059 | 1058.5 | 1088.6 | 0.0593 | 2.0291 | 2.0885 | 62.0 | | 64.0 | 0.29497 | 0.016039 | 1056.5 | 1056.5 | 32.058 | 1057.4 | 1089.5 | 0.0632 | 2.0192 | 2.0824 | 64.0 | | 66.0 | 0.31626 | 0.016043 | 989.0 | 989.1 | 34.056 | 1056.3 | 1090.4 | 0.0670 | 2.0094 | 2.0764 | 66.0 | | 68.0 | 0.33889 | 0.016046 | 926.5 | 926.5 | 36.054 | 1055.2 | 1091.2 | 0.0708 | 1.9996 | 2.0704 | 68.0 | | 70.0 | 0.36292 | 0.016050 | 868.3 | 868.4 | 38.052 | 1054.0 | 1092.1 | 0.0745 | 1.9900 | 2.0645 | 70.0 | | 72.0 | 0.38844 | 0.016054 | 814.3 | 814.3 | 40.049 | 1052.9 | 1093.0 | 0.0783 | 1.9804 | 2.0587 | 72.0 | | 74.0 | 0.41550 | 0.016058 | 764.1 | 764.1 | 42.046 | 1051.8 | 1093.8 | 0.0821 | 1.9708 | 2.0529 | 74.0 | | 76.0 | 0.44420 | 0.016063 | 717.4 | 717.4 | 44.043 | 1050.7 | 1094.7 | 0.0858 | 1.9614 | 2.0472 | 76.0 | | 78.0 | 0.47461 | 0.016067 | 673.8 | 673.9 | 46.040 | 1049.5 | 1095.6 | 0.0895 | 1.9520 | 2.0415 | 78.0 | | 80.0 | 0.50683 | 0.016072 | 633.3 | 633.3 | 48.037 | 1048.4 | 1096.4 | 0.0932 | 1.9426 | 2.0359 | 80.0 | | 82.0 | 0.54093 | 0.016077 | 595.5 | 595.5 | 50.033 | 1047.3 | 1097.3 | 0.0969 | 1.9334 | 2.0303 | 82.0 | | 84.0 | 0.57702 | 0.016082 | 560.3 | 560.3 | 52.029 | 1046.1 | 1098.2 | 0.1006 | 1.9242 | 2.0248 | 84.0 | | 86.0 | 0.61518 | 0.016087 | 527.5 | 527.5 | 54.026 | 1045.0 | 1099.0 | 0.1043 | 1.9151 | 2.0193 | 86.0 | | 88.0 | 0.65551 | 0.016093 | 496.8 | 496.8 | 56.022 | 1043.9 | 1099.9 | 0.1079 | 1.9060 | 2.0139 | 88.0 | | 90.0
92.0
94.0
96.0 | 0.69813
0.74313
0.79062
0.84072 | 0.016099
0.016105
0.016111
0.016117
0.016123 | 468.1
441.3
416.3
392.8
370.9 | 468.1
441.3
416.3
392.9
370.9 | 58.018
60.014
62.010
64.006 | 1042.7
1041.6
1040.5
1039.3 | 1100.8
1101.6
1102.5
1103.3 | 0.1115
0.1152
0.1188
0.1224 | 1.8970
1.8881
1.8792
1.8704 | 2.0086
2.0033
1.9980
1.9928 | 90.0
92.0
94.0
96.0 | Table 2: Saturated Steam (by Pressure) | | | Sp | ecific Volu | me | | Enthalpy | | | Entropy | | | |---|--|---|---|---|--|---|--|--|--|--|---| | Abs Press.
Lb/Sq In.
p | Temp
Fahr
t | Sat.
Liquid
V f | Evap
V fg | Sat.
Vapor
v _g | Sat.
Liquid
h _f | Evap
h _{fg} | Sat.
Vapor
h _g | Sat.
Liquid
^S f | Evap
S fg | Sat.
Vapor
s g | Abs Press
Lb/Sq In.
p | | 0.08865
0.25
0.50
1.0
5.0
10.0
14.696
15.0 | 32.018
59.323
79.586
101.74
162.24
193.21
212.00
213.03 | 0.016022
0.016032
0.016071
0.016136
0.016407
0.016592
0.016719
0.016726 | 3302.4
1235.5
641.5
333.59
73.515
38.404
26.782
26.274 | 3302.4
1235.5
641.5
333.60
73.532
38.420
26.799
26.290 | 0.0003
27.382
47.623
69.73
130.20
161.26
180.17
181.21 | 1075.5
1060.1
1048.6
1036.1
1000.9
982.1
970.3
969.7 | 1075.5
1087.4
1096.3
1105.8
1131.1
1143.3
1150.5
1150.9 | 0.0000
0.0542
0.0925
0.1326
0.2349
0.2836
0.3121
0.3137 | 2.1872
2.0425
1.9446
1.8455
1.6094
1.5043
1.4447
1.4415 | 2.1872
2.0967
2.0370
1.9781
1.8443
1.7879
1.7568
1.7552 | 0.08865
0.25
0.50
1.0
5.0
10.0
14.696
15.0 | | 20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0 | 227.96
250.34
267.25
281.02
292.71
302.93
312.04
320.28 | 0.016834
0.017009
0.017151
0.017274
0.017383
0.017482
0.017573
0.017659 | 20.070
13.7266
10.4794
8.4967
7.1562
6.1875
5.4536
4.8779 | 20.087
13.7436
10.4965
8.5140
7.1736
6.2050
5.4711
4.8953 | 196.27
218.9
236.1
250.2
262.2
272.7
282.1
290.7 | 960.1
945.2
933.6
923.9
915.4
907.8
900.9
894.6 | 1156.3
1164.1
1169.8
1174.1
1177.6
1180.6
1183.1
1185.3 | 0.3358
0.3682
0.3921
0.4112
0.4273
0.4411
0.4534
0.4643 | 1.3962
1.3313
1.2844
1.2474
1.2167
1.1905
1.1675
1.1470 | 1.7320
1.6995
1.6765
1.6586
1.6440
1.6316
1.6208
1.6113 | 20.0
30.0
40.0
50.0
60.0
70.0
80.0 | | 100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0 | 327.82
334.79
341.27
347.33
353.04
358.43
363.55
368.42
373.08
377.53 | 0.017740
0.01782
0.01789
0.01796
0.01803
0.01809
0.01815
0.01821
0.01827
0.01833 | 4.4133
4.0306
3.7097
3.4364
3.2010
2.9958
2.8155
2.6556
2.5129
2.3847 | 4.4310
4.0484
3.7275
3.4544
3.2190
3.0139
2.8336
2.6738
2.5312
2.4030 | 298.5
305.8
312.6
319.0
325.0
330.6
336.1
341.2
346.2
350.9 | 888.6
883.1
877.8
872.8
868.0
863.4
859.0
854.8
850.7
846.7 | 1187.2
1188.9
1190.4
1191.7
1193.0
1194.1
1195.1
1196.0
1196.9
1197.6 | 0.4743
0.4834
0.4919
0.4998
0.5071
0.5141
0.5206
0.5269
0.5328
0.5384 | 1.1284
1.1115
1.0960
1.0815
1.0681
1.0554
1.0435
1.0322
1.0215
1.0113 | 1.6027
1.5950
1.5879
1.5813
1.5752
1.5695
1.5641
1.5591
1.5543
1.5498 | 100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0 | | 200.0
210.0
220.0
230.0
240.0
250.0
270.0
280.0
290.0 | 381.80
385.91
389.88
393.70
397.39
400.97
404.44
407.80
411.07
414.25 | 0.01839
0.01844
0.01850
0.01855
0.01860
0.01865
0.01870
0.01875
0.01880
0.01885 | 2.2689
2.16373
2.06779
1.97991
1.89909
1.82452
1.75548
1.69137
1.63169
1.57597 | 2.2873
2.18217
2.08629
1.99846
1.91769
1.84317
1.77418
1.71013
1.65049
1.59482 | 355.5
359.9
364.2
368.3
372.3
376.1
379.9
383.6
387.1
390.6 | 842.8
839.1
835.4
831.8
828.4
825.0
821.6
8118.3
815.1
812.0 | 1198.3
1199.0
1199.6
1200.1
1200.6
1201.1
1201.5
1201.9
1202.3
1202.6 | 0.5438
0.5490
0.5540
0.5588
0.5634
0.5679
0.5722
0.5764
0.5805 | 1.0016
0.9923
0.9834
0.9748
0.9665
0.9585
0.9508
0.9433
0.9361
0.9291 | 1.5454
1.5413
1.5374
1.5336
1.5299
1.5264
1.5230
1.5197
1.5166
1.5135 | 200.0
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0 | #### **Property Values On or Inside the Steam Dome** ***Looking Up f and g Values from a T-s Diagram in the Steam Tables 1 and 2*** f is any point on the steam dome left of the critical point - saturated liquid g is any point on the steam dome right of the critical point - saturated vapor f and g are both at the same pressure (and notice, both at the same temperature) fg is the difference ("distance") between value g and value f, for example: $$s_g - s_f = s_{fg}$$ $h_g - h_f = h_{fg}$ $$n_g$$ - n_f = n_{fg} all values between f and g are in the saturated steam (wet vapor) phase Steam Tables 1 and 2 are the only property tables you need to solve steam cycle problems that do not have superheat. # Steam Quality (x) "Steam Quality" is denoted by the variable x. It represents the percentage of vapor (0% < x < 100%) in a WET VAPOR state point. In the above T-s diagram, state point 4 is a wet vapor. This state point has a steam quality (x) given by: $$s_f + (x_4)s_{fg} = s_4$$ Note that $3 \rightarrow 4$ is an isentropic expansion in the turbine (i.e. $s_3 = s_4$). So, s_3 is easily looked up as the s_g value for 600 psia in the steam tables. Then we can look up s_f and s_{fg} values for 10 psia. Then solve for x: $$x_4 = \frac{S_4 - S_f}{S_{fg}}$$ %, where $S_4 = S_3$ The counterpart variable to x is "Moisture Content" denoted by the variable m, and given by m = 100% - x. It indicates the <u>percentage of liquid</u> (0% < m < 100%) in a WET VAPOR state point. (Note: Use of m is required for the <u>Mollier Diagram</u>, which is an h-s diagram.) The reason we solve for x is to find the value of h₄ using this same technique: $$h_f + (x)h_{fg} = h_4$$ The above h_{f} and h_{fg} values for 10 psia are looked up in the steam tables. Thus far we know how to solve for h_1 , h_3 , and h_4 . How about solving for h_2 ? Process 1 \rightarrow 2 is work in (pump work). This is given by: $w_{12} = h_1 - h_2$ or $w_{PUMP} = |w_{12}| = h_2 - h_1$ In the ideal Rankine cycle, it is an <u>isentropic</u> process, which makes it an ideal pump (i.e. 100% component efficiency). However, we <u>will not</u> be setting $s_1 = s_2$ to solve for h_2 , due to the complexities of using the subcooled liquid tables (which you do not have). Remember that during $1 \rightarrow 2$, the water is in a pure liquid phase (saturated liquid or subcooled liquid) – that is, it is incompressible. "Incompressible" means that the water has a constant specific volume, ν (assume $\nu_1 = \nu_2 = \nu_f$ @ p₁). From a SFEE balance for an isentropic process, it is found that: $$w_{12} = \nu_1 (p_1 - p_2) = h_1 - h_2 \underline{or} w_{PUMP} = |w_{12}| = \nu_1 (p_2 - p_1) = h_2 - h_1$$ Thus, the key to solving for h_2 is identifying ν_1 (simply look up $\nu_1 = \nu_f @ p_1$) and identifying p_1 and p_2 . (Note there is an exception in the case of *condenser* subcooling where ν_1 is looked up at $T_1 = T_f - T_{SUBCOOL}$ instead.) # Ideal (isentropic) Pump Work (h₂-h₄) ## **Condenser Subcooling** In the case of *condenser subcooling*, the water leaves the condenser at a temperature lower than the saturated liquid temperature (T_f) of the ideal Rankine cycle. HOWEVER, since the condenser is modeled as isobaric (i.e. $p_1 = p_4$), the new state point 1 is <u>still</u> along the constant pressure line, just in the subcooled liquid region at a LOWER temperature than T_f . #### Effect of subcooling: If condenser subcooling occurs (usually given as something like "the condensate leaves the condenser with 7°F subcooling"), then ν_1 (and h_1) MUST NOT be looked up at pressure p_1 in the steam table. Instead ν_1 (and h_1) must be looked up at the temperature $T_1 = T_f$ (@p1) – $T_{SUBCOOL}$. Since you do not have subcooled liquid tables, you will approximate by using the value ν_f (@ T_1) = ν_1 . | Summary of enthalpy values (<u>ideal</u> Rankine cycle): | |---| | h ₁ = h _f (@ p ₁ = p ₄ pressure in steam tables), except subcooling | | ✓ $h2 = h1 + \nu_1 (p_2 - p_1) = h1 + w_{PUMP}$ | | $$ $h_3 = h_g$ (@ $p_2 = p_3$ pressure in steam tables) | | h ₄ = h _f + (x) h _{fg} (h _f and h _{fg} are @ p ₁ = p ₄ pressure in steam tables) | | ● [™] NOTES: | (1) DO NOT USE the pump technique for the turbine enthalpies. That is: $$h_3 \neq h_4 + \nu_4 (p_3 - p_4)$$ because, in the turbine, the water IS NOT an incompressible liquid! (2) Remember pump work in the form " ν_1 (p₂ – p₁)" does not directly work out to units of [Btu/Ib_m], so use appropriate conversion factors. (3) $\nu_1 = \nu_f$ will NOT be looked up at $p_1 = p_4$ IF there is *condenser subcooling*. Use ν_1 @ T_1 instead, where $T_1 = T_f$ (@p1) – $T_{SUBCOOL}$. ______ FOR ANALYSIS OF A STEAM CYCLE, a state point properties table will be useful. For the <u>ideal</u> Rankine cycle, we have 4 state points, thus: | | 1 | 2 | 3 | 4 | |-------------------------------|---|---|---|---| | p [psia] | | | | | | T [°F] | | | | | | h [Btu/lbm] | | | | | | s [Btu/lb _m °R] | | | | | | $ u$ [ft 3 /lb $_{ m m}$] | | | | | Superheat is the result of the boiler supplying enough heat $(q_s = h_3 - h_2)$ such that state point 3 (exit of the boiler) exceeds the saturation temperature $(T_f = T_g)$ of the water at boiler pressure $(p_2 = p_3)$. In other words, the steam leaves the boiler in a superheated vapor phase. In finding h_3 , the only difference now is that we must use the superheated steam portion (table 3) of the steam tables. Without superheat, previously, we would use the saturated steam (table 1 or table 2) portion of the steam tables. **Table 3: Superheated Steam (by Pressure)** Table 3. Superheated Steam | Abs Press.
Lb/Sq In. | | 0-4 | Sat Temperature — Degrees Fahrenheit | | | | | | | | | | | | | | | |----------------------------|--------------------|-----------------------------|--------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------| | (Sat. Temp) | | Sat.
Water | Sat.
Steam | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | | 1
(101.74) | Sh
v
h
s | 0.01614
69.73
0.1326 | 333.6
1105.8
1.9781 | 98.26
392.5
1150.2
2.0509 | 148.26
422.4
1172.9
2.0841 | 198.26
452.3
1195.7
2.1152 | 248.26
482.1
1218.7
2.1445 | 298.26
511.9
1241.8
2.1722 | 348.26
541.7
1265.1
2.1985 | 398.26
571.5
1288.6
2.2237 | 498.26
631.1
1336.1
2.2708 | 598.26
690.7
1384.5
2.3144 | 698.26
750.3
1433.7
2.3551 | 798.26
809.8
1483.8
2.3934 | 898.26
869.4
1534.9
2.4296 | 998.26
929.0
1586.8
2.4640 | 1098.26
988.6
1639.7
2.4969 | | 5 (162.24) | Sh
v
h
s | 0.01641
130.20
0.2349 | 73.53
1131.1
1.8443 | 37.76
78.14
1148.6
1.8716 | 87.76
84.21
1171.7
1.9054 | 137.76
90.24
1194.8
1.9369 | 187.76
96.25
1218.0
1.9664 | 237.76
102.24
1241.3
1.9943 | 287.76
108.23
1264.7
2.0208 | 337.76
114.21
1288.2
2.0460 | 437.76
126.15
1335.9
2.0932 | 537.76
138.08
1384.3
2.1369 | 637.76
150.01
1433.6
2.1776 | 737.76
161.94
1483.7
2.2159 | 837.76
173.86
1534.7
2.2521 | 937.76
185.78
1586.7
2.2866 | 1037.76
197.70
1639.6
2.3194 | | 10
(193.21) | Sh
v
h
s | 0.01659
161.26
0.2836 | 38.42
1143.3
1.7879 | 6.79
38.84
1146.6
1.7928 | 56.79
41.93
1170.2
1.8273 | 106.79
44.98
1193.7
1.8593 | 156.79
48.02
1217.1
1.8892 | 206.79
51.03
1240.6
1.9173 | 256.79
54.04
1264.1
1.9439 | 306.79
57.04
1287.8
1.9692 | 406.79
63.03
1335.5
2.0166 | 506.79
69.00
1384.0
2.0603 | 606.79
74.98
1433.4
2.1011 | 706.79
80.94
1483.5
2.1394 | 806.79
86.91
1534.6
2.1757 | 906.79
92.87
1586.6
2.2101 | 1006.79
98.84
1639.5
2.2430 | | 1 4.696
(212.00) | Sh
v
h
s | .0167
180.17
.3121 | 26.799
1150.5
1.7568 | | 38.00
28.42
1168.8
1.7833 | 88.00
30.52
1192.6
1.8158 | 138.00
32.60
1216.3
1.8459 | 188.00
34.67
1239.9
1.8743 | 238.00
36.72
1263.6
1.9010 | 288.00
38.77
1287.4
1.9265 | 388.00
42.86
1335.2
1.9739 | 488.00
46.93
1383.8
2.0177 | 588.00
51.00
1433.2
2.0585 | 688.00
55.06
1483.4
2.0969 | 788.00
59.13
1534.5
2.1332 | 888.00
63.19
1586.5
2.1676 | 988.00
67.25
1639.4
2.2005 | | 15
(213.03) | Sh
v
h
s, | 0.01673
181.21
0.3137 | 26.290
1150.9
1.7552 | | 36.97
27.837
1168.7
1.7809 | 86.97
29.899
1192.5
1.8134 | 136.97
31.939
1216.2
1.8437 | 186.97
33.963
1239.9
1.8720 | 236.97
35.977
1263.6
1.8988 | 286.97
37.985
1287.3
1.9242 | 386.97
41.986
1335.2
1.9717 | 486.97
45.978
1383.8
2.0155 | 586.97
49.964
1433.2
2.0563 | 686.97
53.946
1483.4
2.0946 | 786.97
57.926
1534.5
2.1309 | 886.97
61.905
1586.5
2.1653 | 986.97
65.882
1639.4
2.1982 | | 20 (227.96) | Sh
v
h
s | 0.01683
196.27
0.3358 | 20.087
1156.3
1.7320 | | 22.04
20.788
1167.1
1.7475 | 72.04
22.356
1191.4
1.7805 | 122.04
23.900
1215.4
1.8111 | 172.04
25.428
1239.2
1.8397 | 222.04
26.946
1263.0
1.8666 | 272.04
28.457
1286.9
1.8921 | 372.04
31.466
1334.9
1.9397 | 472.04
34.465
1383.5
1.9836 | 572.04
37.458
1432.9
2.0244 | 672.04
40.447
1483.2
2.0628 | 772.04
43.435
1534.3
2.0991 | 872.04
46.420
1586.3
2.1336 | 972.04
49.405
1639.3
2.1665 | | 25
(240.07) | Sh
v
h
s | 0.01693
208.52
0.3535 | 16.301
1160.6
1.7141 | | 9.93
16.558
1165.6
1.7212 | 59.93
17.829
1190.2
1.7547 | 109.93
19.076
1214.5
1.7856 | 159.93
20.307
1238.5
1.8145 | 209.93
21.527
1262.5
1.8415 | 259.93
22.740
1286.4
1.8672 | 359.93
25.153
1334.6
1.9149 | 459.93
27.557
1383.3
1.9588 | 559.93
29.954
1432.7
1.9997 | 659.93
32.348
1483.0
2.0381 | 759.93
34.740
1534.2
2.0744 | 859.93
37.130
1586.2
2.1089 | 959.93
39.518
1639.2
2.1418 | | 30
(250.34) | Sh
v
h
s | 0.01701
218.93
0.3682 | 13.744
1164.1
1.6995 | | | 49.66
14.810
1189.0
1.7334 | 99.66
15.859
1213.6
1.7647 | 149.66
16.892
1237.8
1.7937 | 199.66
17.914
1261.9
1.8210 | 249.66
18.929
1286.0
1.8467 | 349.66
20.945
1334.2
1.8946 | 449.66
22.951
1383.0
1.9386 | 549.66
24.952
1432.5
1.9795 | 649.66
26.949
1482.8
2.0179 | 749.66
28.943
1534.0
2.0543 | 849.66
30.936
1586.1
2.0888 | 949.66
32.927
1639.0
2.1217 | Table 3 has a different layout than Tables 1 and 2. Generally, you will look up property values by using the <u>boiler pressure</u> as your entering argument. Then use the <u>maximum boiler temperature</u> as your cross-reference argument to find n, h, or s. What is Sh? This is the "degrees of superheat." In other words, this is the number of degrees (Fahrenheit) above the saturation temperature T_g . ### **Pump and Turbine Efficiencies** Component efficiencies for the <u>pump</u> and <u>turbine</u> are similar to that of the compressor and turbine in the gas turbine engine: $$h_{PUMP} = \frac{h_{2s} - h_{1}}{h_{2} - h_{1}}$$ and $h_{TURB} = \frac{h_{3} - h_{4}}{h_{3} - h_{4s}}$ The component efficiency of the <u>boiler</u> is very similar to the component efficiency of the combustion chamber in the GT engine: $$h_{\text{BOILER}} = \frac{\dot{m}_{\text{STM}}(\textit{h}_{3} - \textit{h}_{2})}{\dot{m}_{\text{FUEL}}(\textit{HHV})}$$ # Pump and Turbine Efficiencies (w/ superheat) Note: Look at h_4 and h_{4s} . Inside the steam dome both points lie on the constant pressure line $p_1 = p_4$. It may not be apparent inside the steam dome, but we find that $(h_3 - h_4) < (h_3 - h_{4s})$ because $h_{4s} < h_4$. #### Nozzle Nozzles are used inside the turbine to produce a high velocity steam that strikes the turbine blades (which in turns causes turbine rotation to produce shaft output power). Remember that the working fluid, as it enters the turbine (i.e. exits the boiler), is now a <u>compressible</u> saturated vapor or superheated vapor. If a nozzle is designed properly, it is possible to increase the <u>velocity V</u> (of a compressible fluid) as the nozzle <u>cross-section area A increases</u>. So we find for the turbine nozzle: $$A_2 > A_1$$ and $V_2 > V_1$ It is useful in turbine design to analyze the SFEE properties of the turbine nozzle: $$\left(\frac{g}{g_c}\right) z_1 + \left(\frac{1}{2g_c}\right) V_1^2 + h_1 + q_{12} = \left(\frac{g}{g_c}\right) z_2 + \left(\frac{1}{2g_c}\right) V_2^2 + h_2 + w_{12}$$ By assuming an adiabatic ($q_{12} = 0$) nozzle design with negligible height difference ($z_1 = z_2$) and no mechanical work done ($w_{12} = 0$), we are left with the following: $$V_2^2 - V_1^2 = 2g_c(h_1 - h_2)$$ #### **NOTES** - (1) DO NOT confuse the above h_1 and h_2 for the enthalpies at the entrance and exit of the pump. These are just the enthalpies at the entrance (1) and exit (2) of the nozzle. - (2) Usually, but not always, velocity V_1 is negligible compared to velocity V_2 . You must carefully read the problem statement to determine if you can neglect V_1 .